Рекомендательная система текстовой аналитики юридических документов

Денис Сергеевич Зуев, Марат Фаритович Насрутдинов, Айрат Фаридович Хасьянов

Аннотация


Обсуждено использование механизмов машинного обучения, анализа естественного языка и интеллектуального поиска в области юриспруденции. Основные ожидаемые результаты – методология применения алгоритмов текстовой аналитики и семантического анализа естественного языка (NLP) в задачах управления знаниями в судебном делопроизводстве, а также других видах юридической практики. Полученные результаты могут быть применены в области образования и управления знаниями в более широком контексте, поскольку исследование лежит на стыке юриспруденции, математической и компьютерной лингвистики.

Описан прототип многоагентной системы интеллектуального анализа текстов в юриспруденции, способной на имеющейся базе данных судебных документов выявлять общие зависимости, предоставлять для ознакомления юридические дела, близкие по тематике, рекомендовать наиболее вероятные исходы судебного рассмотрения или помечать важные места, на которые следует обращать внимание при процессуальных действиях с использованием инструментов текстовой аналитики.

Ключевые слова


аналитика и управление данными; интенсивное использование данных; электронные библиотеки; кластеризация; классификация судебных актов; рекомендательная система; микросервисная архитектура

Полный текст:

PDF

Литература


Peroni S. Semantic Web Technologies and Legal Scholarly Publishing Law, Springer, Governance and Technology Series, 2014. V. 15. doi 10.1007/978-3-319-04777-5

Елизаров А. М., Жижченко А. Б., Жильцов Н. Г., Кириллович А. В., Липачёв Е. К. Онтологии математического знания и рекомендательная система для коллекций физико-математических документов //Доклады Академии наук. 2016. Т. 467, № 4. С. 392–395. doi: 10.1134/S1064562416020174

Елизаров А. М., Липачёв Е. К., Невзорова О. А., Соловьев В. Д. Методы и средства семантического структурирования электронных математических документов //Доклады Академии наук. 2014. Т. 457, № 6. С. 642–645. doi 10.7868/S0869565214240049

Грант С. Ингерсолл, Томас С. Мортон, Эндрю Л. Фэррис. Обработка неструктурированных текстов. Поиск, организация и манипулирование/ Пер. с англ. Слинкин А. А. – М.: ДМК Пресс, 2015. – 414 с.: ил.

Зуев Д. С., Марченко А. А., Хасьянов А. Ф. Применение инструментов интеллектуального анализа текстов в юриспруденции // CEUR Workshop Proceedings. 2017. V. 2022. P. 214–218. http://ceur-ws.org/Vol-2022/paper35.pdf

Digital Mathematics Library: a vision for the future. International Mathematical Union, 2006. http://www.mathunion.org/fileadmin/IMU/Report/ dml_vision.pdf.

Olver P. J. What’s happening with the World Digital Mathematics Library? http://www.math.umn. edu/~olver/t_/wdmlb.pdf

Developing a 21st century global library for mathematics research. Washington, D.C.: The National Academies Press, 2014. 131 p. arxiv.org/pdf/1404.1905; http://www.nap.edu/catalog/18619/developing-a-21st-century-global-library-for-mathematics-research.

Toschev А., Talanov М. Thinking Lifecycle as an Implementation of Machine Understanding in Software Maintenance Automation Domain// Jezic G., Howlett R., Jain L. (eds) Agent and Multi-Agent Systems: Technologies and Applications. Smart Innovation, Systems and Technologies. 2015. Vol 38. Springer, Cham. doi: 10.1007/978-3-319-19728-9_25

Gold N. et al. Understanding Service Oriented Software. IEEE Software. 2004. V. 21, No. 2. P. 71–77.

Jones S. Toward an Acceptable Definition of Service. IEEE Software. 2005. V. 22, No. 3. P. 87–93.

Fowler M. Microservices a definition of this new architectural term. https://martinfowler.com/articles/microservices.html

Ricci F., Rokach L., Shapira B., Kantor P.B. Recommender Systems Handbook. N.Y.: Springer, 2011. 842 p.




DOI: http://dx.doi.org/10.26907/1562-5419-2018-21-5-435-449